
Hacking USB HID for
Easy Tethered Ubicomp

Tod E. Kurt / ThingM Sketching2010
24 July 2010

Spooky Arduino

WineM

Crystal Monster

BlinkM family

ScrewShieldCRASH Space

Wiichuck
adapter

todbot does...

http://thingm.com/
http://winem.thingm.com/
http://blinkm.thingm.com/
http://crashspace.org/
http://sublimina.com/work/crystal-monster
http://wingshieldindustries.com/
http://hackingroomba.com/
http://todbot.com/blog/spookyarduino/
http://todbot.com/blog/2008/02/18/wiichuck-wii-nunchuck-adapter-available/

My Conception of Ubicomp Objects

They aren’t configured, or
wired up, or recharged

They have their own
intelligence &

network connectivity

Just like normal objects
but on the Net

Finding a cheap, low-power wireless networking solution was key

It turns out,

wireless is difficult

wireless is complex

wireless is expensive

Even Bluetooth & Zigbee, still ~$20/node
(And those require gateways to Internet)

Ember EM260 ZigBee chip

Wireless Ubicomp
“I want a <$5 network connection for my gadget”

It’s difficult: requires real engineering (RF, analog, digital, protocol) to do it yourself, requires
certification
It’s complex: look at the Ember EM260 Zigbee chip. Look at everything but the red square. Then the
red square? It’s an ARM32 CPU
It’s expensive: basic components not cheap, costs power (WiFi)

Wireless, bah

- Per-object cost is frustrating

- Needs per-object configuration

- Needs special gateway device to Net

- Still need to solve power problem

(Nordic chips get kinda close, tho’)

The Nordic nRF chips used in wireless mice & keyboards can have a BOM cost of ~$2 in large
quantity. This is getting close, but still would need a WiFi<->Nordic gateway device somewhere.

“Tethered” Ubicomp“Tethered” Ubicomp

■ Devices need two things:

■ USB allows offload of connectivity
& power hassles to computer

■ Need a gateway anyway,
make it the computer

■ But now have to deal with USB

■ USB is hard. Isn’t it?

SSID: NearbyCafe
WEP key: 0x32adbbcd
ZigBee PAN ID: 0x00BCD1
12VDC @ 500mA wall wart

none of this stuff plz

network & power

“Tethered” Ubicomp
Tengu

Availabot

Snowbot

misc Arduino

TweetM

Net-controlled AC lamp

Almost every Arduino project that’s serial-commandable is an example of “tethered ubicomp” to me.
Also, Phidgets.

Serial vs. HID

■ Install device driver
■ (Reboot)
■ Plug in device
■ Connect
■ Use Device
■ Disconnect
■ Unplug device

■ Plug in Device
■ Use Device
■ Unplug device

Serial-port based device HID-based device

usability from a user’s perspective

- unplug before disconnect at your peril
- lots of confusion if you do things out of order
- still need to supply power to device

Driver Installs Suck

Reboots? INF files?

Really? In 2010?

Serial-Oriented Semantics Suck
COM ports? Sigh.

Which port? What port settings?
Still need to create data protocol

A Solution: Use USB “Class” Drivers

 PC USB
class driver

MCU app USB
class stack

task

- Mass Storage
- Printer
- Audio
- Video Camera
- CDC
- HID

All these need USB 2.0 (faster, harder to implement), except for HID
All except Storage, Audio, HID kinda wonky, depending on OS

Pre-defined USB drivers already in your OS

HID not just for Keyboards & Mice

HID devices speak in bi-directional structured data packets

Arbitrary data structures can be defined, called “reports”

Reports can be any size*

Multiple reports can be defined

Let’s say our reports are a single 16-byte buffer, used in both directions

 PC USB HID
stack MCU app USB HID

stack task
0123456789ABCDEF

0123456789ABCDEF

out_buffer

in_buffer

* up to 512 bytes realistically

Could define multiple reports for different purposes
HID bootloaders do that: one for data payload, another for status msgs

Host-side API for Generic Data thru HID

-open()
-command(in_buffer, out_buffer)
-close()

“open()”
- scans bus or opens specific device by VendorID/ProductID
- doesn’t have to open exclusively

“command()”
- sends a buffer of data to device
- optionally receives a buffer of data from device

Host-side Examples

Sending data to device:
// set color to white
out_buffer = {‘c’, 0xff, 0xff, 0xff};
command(out_buffer, null);

Reading data from device:
// get I2C address
out_buffer = {‘a’};
command(out_buffer, in_buffer);
println(in_buffer);

Embrace Connectionlessness

// I don’t care if this succeeds
command(out_buffer, null);

// I want to know what’s going on
try {
 command(out_buffer, null);
} catch(IOException ioe) {
 devicePresent = false;
}

// periodically, do
if(!devicePresent) {
 lookForDevice();
}

User can pull device at any time

Think UDP not TCP

Have a separate thread or otherwise periodically check for device insertion.

Device-side API for Generic Data thru HID

One function:
handleMessage()

Global buffers:
in_msg_buff
out_msg_buff

Doing a transaction:
void handleMessage() {
 cmd = in_msg_buff[0];
 if(cmd == ‘v’) // version
 out_msg_buff = {0x13, 0x37};
}

This is a simplification of what’s going on in the LinkM firmware, but can apply to the general case,
even across chip types like to a PIC 18F4550 USB.

Platforms?

Host code works on “all” platforms

On Mac OS X & Linux: libusb
On Windows: hidsdi.h/hidpi.h

Abstraction layer in C for same codebase on all three

Abstraction layer written by Obdev.at (makers of V-USB for
AVR), packaged lightly by ThingM

Java wrapper library & Processing library by ThingM

Python library upcoming, hopefully

Check out the “hiddata” example project in V-USB for the basis of what was used.

Others doing USB HID

Microchip USB: PIC18F4550

V-USB: ATmega & ATtiny

Atmel USB/LUFA: ATmegaxUx

CREATE USB

Teensy EasyLogger

TiltStick

http://microchip.com/usb
http://www.obdev.at/products/vusb/
http://www.fourwalledcubicle.com/LUFA.php
http://www.atmel.com/products/AVR/usb.asp

http://www.create.ucsb.edu/~dano/CUI/
http://www.pjrc.com/teensy/

Downsides to HID

Well, it’s tethered.

- 5 meters (16’) cable length by spec

- But you get power on that cable (up to 500mA)

Also, slow. (compared to USB 2.0)

- full-speed HID: 640 kbps (64 bytes / 1msec frame)

- low-speed HID: 8 kbps (8 bytes / 10msec frame)

- But that’s good enough for most cases

Bureaucratic Hassles of USB

Need USB-IF compliance testing for USB logo use
- Need to be USB-IF member ($4k/yr)
- So, don’t use logo

Need unique VendorID & ProductID for each gadget
- VendorID: $2k/2yr from USB-IF (non-member)
- V-USB: free PIDs for OSS use
- V-USB: two VID/PIDs for $500 prof. license
- Microchip: free PID under their VID
- Atmel: use their VID/PID, no PID of your own

=> Can avoid most hassles fairly cheaply

LinkM
low-cost USB-to-I2C adapter

LinkM can directly power from USB 8 regular BlinkMs or one BlinkM MaxM.

LinkM
based on ATmega88P, using V-USB software USB stack

100% open source
Two chip solution,
including I2C line driver

Actually contains two
independent USB HID
stacks: task & bootloader

TweetM

Control an LED via Twitter

LinkM + BlinkM
Gateway in Processing
Multiple BlinkMs addressable

Called “TwitM” at Maker Faire. Had two BlinkMs in that case, one responded to any tweets with
“makerfaire”, the other was commandable with the command language “blinkm <colorname>”

LinkM Next Steps

Better unified build environment for host-side code
- Compiling for 5 platforms: Win32, Linux, Mac OS X (i386/x86_64/ppc)

Test with other I2C devices
- Wii nunchuck
- Capacitive touch sensor

Would like to move to Microchip PIC18F450
- Better chip availability, better USB stack
- But Windows-only dev environment, yuk

LinkM Links

http://linkm.thingm.com/

http://linkm.googlecode.com/

Some TBD link for a generalization of the USB-HID tricks

http://linkm.thingm.com
http://linkm.thingm.com
http://linkm.googlecode.com
http://linkm.googlecode.com

Tod E. Kurt
http://thingm.com/
http://todbot.com/blog/

Sketching2010
24 July 2010

http://thingm.com
http://thingm.com
http://todbot.com/blog/
http://todbot.com/blog/

