
Description
BlinkM is a “Smart LED”, a networkable and
programmable full-color RGB LED for hobbyists,
industrial designers, prototypers, and
experimenters.

It is designed to allow the easy addition of dynamic
indicators, displays, and lighting to existing or new
projects.

If you’ve used up all your microcontroller PWM
channels controlling RGB LEDs and still want more,
BlinkM is for you.

Features
■ 8000 mcd 140º full-color RGB LED with 24-bit color control
■ Specify colors by 24-bit RGB or HSB
■ Fade between colors with variable timing and fade speeds
■ Randomized color selection, with ranges and based on previous color
■ 32 built-in light scripts (sequences)
■ Create and save light scripts of up to 49 commands long
■ Stand-alone operation: No microcontroller needed for light script playback
■ Can plug directly into Arduino, no wiring or other components needed!
■ Two-wire (aka “I2C”) remote commanding
■ Up to 127 BlinkMs on a single two-wire network
■ Responds to “general call” broadcast for simultaneous commanding
■ Reconfigurable network address
■ Firmware upgradable
■ 5-volt standard TTL inputs
■ Low power consumption

Application Ideas
■ Prototype and Industrial Design indicators
■ Personalized color accent lights
■ Casemod lighting
■ Programmable holiday lighting
■ Safe tea lights
■ Custom bike lights

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

Table of Contents

1. Introduction

1. Anatomy

2. Connections

2. Getting Started

1. Stand-alone Operation

2. Peripheral Operation

3. BlinkM Sequencer

3. BlinkM Commands

1. Command Structure

2. Command List Summary

3. Command Details

4. BlinkM Concepts

1. I2C Addressing

2. Color Models

3. Light Scripts

4. Timing Variations

5. Other Circuits

1. Connecting BlinkM to a Basic Stamp

2. Connecting Multiple BlinkMs

3. Battery Powered BlinkM

4. Reprogramming BlinkM’s Flash Memory

6. Code Examples

1. Arduino/AVR

7. Electrical Characteristics

8. BlinkM Schematic

9. Packaging Information

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

1. Introduction

BlinkM is an example of a Smart Interface Component, an uplifting of traditionally dumb
interface components into devices that embed within themselves domain-specific
knowledge about their functioning. In this case, BlinkM is a Smart LED and knows how to
turn 24-bit RGB or HSB color values into the corresponding high-frequency PWM signals
needed to drive its super-bright RGB LED. It also goes one step further by embedding time-
varying color sequences called “light scripts” that can be triggered with a single command,
allowing complex light displays to occur with minimal overhead by whatever CPU is
controlling BlinkM. Several BlinkMs can be controlled simultaneously or individually using
only two signal lines from the controlling CPU. The control is in the form of a simple I2C
command set usable with a variety of controllers.

1.1 Anatomy

Figure 1.1: BlinkM layout
0.6"

ground (GND)

+power (3-5VDC)

i2c clock (SCK)

i2c data (SDA)

alternate

gnd &

power

8k mcd

RGB LED

0.1" pin

header

ir

Photo 1.1: BlinkM

1.2	 Connections

PWR – Ground, aka “Gnd”

PWR + 3-5VDC regulated power input, aka “Vcc”

I2C d I2C data input/output, aka “SDA”

I2C c I2C clock input/output, aka “SCK”

The two outer connections are normally only used when programming the BlinkM CPU.
Those connections are labeled on the bottom of the BlinkM:

r Reset, normally unused. Used for programming

i MOSI, normally unused. Used for programming

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

Note: normally I2C lines SDA & SCK require 4.7kΩ pull-up resistors. For short cable runs,
the pull-up resistors inside most microcontrollers (like Arduino’s AVR) are sufficient.

Note: The BlinkM CPU will operate down the 2.7V. However, not all LEDs will be able to turn
fully on. The blue and green LEDs need approximately 3.5V to turn on completely. Running
BlinkM at <3.5V doesn’t harm anything but could reduce color accuracy.

2.	 Getting Started

There are two main ways of using BlinkM: as a peripheral to an existing project or as a
stand-alone object.

2.1.	 Stand-alone Operation

To test basic functionality, connect BlinkM’s “PWR +” pin to +3-5VDC and “PWR -” pin to
ground, as in Photo 2.1. BlinkM will play its default startup light script:
white→red→green→blue→off. This startup script can be customized, see Section 2.3
“BlinkM Sequencer” or Section 4.2 “Playing Light Scripts”.

2.2 Peripheral Operation

The steps to start working with BlinkM as a peripheral are:

1. Connect power, ground, & I2C data lines between BlinkM and the I2C master device.

2. Power up BlinkM and the master device.

Photo 2.1: BlinkM Stand-alone Operation

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

3. Send commands to BlinkM over I2C bus.

BlinkM is an I2C slave device just like the many other I2C devices on the market. Any
device that can be an I2C master can control BlinkM. This includes Arduino, Basic Stamp,
and USB-to-I2C adapters.

Perhaps the easiest way to get started programming a BlinkM is using an Arduino board.
Arduino is a fun and easy-to-use microcontroller platform. To learn more about Arduino, visit
the Arduino homepage: http://arduino.cc/. Arduino boards are available from Sparkfun
(http://sparkfun.com/), Adafruit (http://adafruit.com/), and the Maker store (http://
store.makezine.com/)

2.2.1	 Connecting BlinkM
BlinkM needs two wires for power and two for data. Figure 2.2.1a shows the connections
needed when hooked up to an Arduino. The Arduino “analog in” pins 4 & 5 also double as
the I2C data signal (“SDA”) and clock signal (“SCK”), respectively.

Even easier is to plug the BlinkM directly into Arduino, as in Figure 2.2.1b. In this
configuration, power is drawn from the Arduino’s analog in pins 2 & 3, configured via
software to act as power pins. This does not damage the pins, but does reduce the
maximum brightness of BlinkM by about 30%.

See “Other Circuits” below for details on how to connect BlinkM to a Basic Stamp 2.

2.2.2	 Sending Commands to BlinkM

Figure 2.2.1: Connecting BlinkM to Arduino

OR

a. b.

SDA

SCK

PWR

GND

SCK
SDA

GND
PWR

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

http://arduino.cc
http://arduino.cc
http://sparkfun.com
http://sparkfun.com
http://adafruit.com
http://adafruit.com
http://store.makezine.com
http://store.makezine.com
http://store.makezine.com
http://store.makezine.com

Once BlinkM is connected to an Arduino or other I2C master, commands can be sent to it.
All I2C commanding follows the same basic structure:

1. Initialize the I2C subsystem of the master device

2. Join the I2C bus and indicate the address of the slave device to talk to

3. Send the bytes containing the command

4. Leave the I2C bus

When using the “Wire” library for Arduino, such a sequence looks like:

Wire.begin(); // set up I2C
Wire.beginTransmission(0x09);// join I2C, talk to BlinkM 0x09
Wire.send(‘c’); // ‘c’ == fade to color
Wire.send(0xff); // value for red channel
Wire.send(0xc4); // value for blue channel
Wire.send(0x30); // value for green channel
Wire.endTransmission(); // leave I2C bus

2.3	 BlinkM Sequencer

To start playing with BlinkM commanding immediately, there is the handy BlinkM Sequencer
program for Mac OS X, Windows, and Linux available at http://blinkm.thingm.com/. It allows
the creation of light scripts using a drum machine-style metaphor and requires no
programming or hardware experience. All that’s required is an Arduino and a BlinkM.

Figure 2.3: BlinkM Sequencer

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

http://blinkm.thingm.com
http://blinkm.thingm.com

3.	 BlinkM Commands

All commanding of BlinkM is done via the I2C bus. For more information about I2C, see
http://www.best-microcontroller-projects.com/i2c-tutorial.html. When using Arduino
or AVR microcontrollers, the Wiring “Wire” library can be used to make I2C communication
simpler. See the Wire reference at http://wiring.org.co/reference/libraries/Wire/ for more
details.

3.1 Command Structure

BlinkM commands consist of a one byte command code and zero or more argument bytes.
The command code byte’s ASCII value is mnemonically related to the action performed.

3.1.1	 I2C Addresses
The default BlinkM address is 0x09. It can be changed at any time with the “Set
Address”(“A”) command described below. BlinkM responds to both its defined I2C address
and the “general call” broadcast address (0x00).

The general call address can also be used to address all BlinkMs simultaneously, as most all
BlinkM commands do not return a value (which is not allowed when using general call).

The use of general call may not work on I2C networks with other devices that also use
general call.

3.1.2 Time ticks, units

The time unit used in BlinkM commands and durations is a “tick”, which is equal to 1/30th of
a second (33.33 milliseconds).

3.1.3 Numbering Conventions
Numbers are interchangeably represented as decimal or hexadecimal, and in some cases,
ASCII characters. Hexadecimal numbers are represented with either a “0x” prefix (to indicate
use in code, like “{0xff,0x00,0x9a}”) or “#” prefix (to indicate a color, like “#FF00FF”);

3.2 Command List Summary

Below are all commands recognized by BlinkM, along with how many arguments they take,
the return values they produce, and a command format overview.

The “cmd char” is the command byte in ASCII character form. The character is chosen to be
mnemonic of the command’s function. The “cmd byte” column is the actual byte value of
the ASCII character value sent over the wire.

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://wiring.org.co/reference/libraries/Wire/
http://wiring.org.co/reference/libraries/Wire/

command name cmd
char

cmd
byte # args # ret

vals format

Go to RGB Color Now n 0x6e 3 0 {‘n’,R,G,B}

Fade to RGB Color c 0x63 3 0 {‘c’,R,G,B}

Fade to HSB Color h 0x68 3 0 {‘h’,H,S,B}

Fade to Random RGB Color C 0x43 3 0 {‘C’,R,G,B}

Fade to Random HSB Color H 0x48 3 0 {‘H’,H,S,B}

Play Light Script p 0x70 3 0 {‘p’,n,r,p}

Stop Script o 0x6f 0 0 {‘o’}

Set Fade Speed f 0x66 1 0 {‘f’,f}

Set Time Adjust t 0x74 1 0 {‘t’,t}

Get Current RGB Color g 0x67 0 3 {‘g’}

Write Script Line W 0x57 7 0 {‘W’,n,p,...}

Read Script Line R 0x52 2 5 {‘R’,n,p}

Set Script Length & Repeats L 0x4c 3 0 {‘L’,n,l,r}

Set BlinkM Address A 0x41 4 0 {‘A’,a...}

Get BlinkM Address a 0x61 0 1 {‘a’}

Get BlinkM Firmware Version Z 0x5a 0 1 {‘z’}

Set Startup Parameters B 0x42 4 0 {‘B’,m,n,f,t}

3.3 Command Details

Each command below has its format listed on the right edge. This format resembles a byte
array used in Java, C, and Arduino, and is a mnemonic for succinctly noting the layout of a
command that can also be copied almost verbatim and used as code.

Go to RGB Color Now format: {‘n’,R,G,B}

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

This command sets the BlinkM to a particular RGB color immediately. The command takes
three argument bytes, one each for setting the levels of the red, green, and blue channels.
Each value ranges from 0-255 (0x00-0xff in hexadecimal), with 0 being off and 255 being
maximum brightness, just like web colors. For more information about the RGB color
model, see Section 4.3 “Color Models” below.

This command does not return a value.

Examples:
{‘n’, 0xff,0xff,0xff} // set full on (bright white) now
{‘n’, 0x00,0x00,0x00} // set full off (dark)
{‘n’, 0xff,0x00,0x00} // set full red
{‘n’, 0x00,0xff,0x00} // set full green
{‘n’, 0x00,0x00,0xff} // set full blue

Fade to RGB Color format: {‘c’,R,G,B}

This command tells BlinkM to fade from the current color to the specified RGB color. The
command takes three argument bytes, one each for setting the levels of the red, green, and
blue channels. Each value ranges from 0-255 (0x00-0xff in hexadecimal), with 0 being off
and 255 being maximum brightness, just like web colors. For more information about the
RGB color model, see Section 4.3 “Color Models” below.

The rate at which the fading occurs is controlled by the “Set Fade Speed” (‘f’) command.
The default fade time is 15 time units.

Examples
{‘n’, 0xff,0xff,0xff} // set full on (bright white) now
{‘c’, 0x00,0x00,0xff} // fade to bright blue
{‘c’, 0xff,0xff,0x00} // fade to yellow

Fade to HSB Color format: {‘h’,H,S,B}

This command will fade from the current color to the specified HSB color. The command
takes three bytes as arguments. The first argument byte is the hue (or raw color), with the
following mapping from 0-255.

The second argument is the saturation, or vividness, of the color. A saturation of 0 means a
very light/white color and a saturation of 255 means a very vivid color. The third argument is

0 25512864 192

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

the brightness of the resulting color, where 0 is totally dark and 255 means maximally bright.
For more information about the HSB color space, see Section 4.3 “Color Models” below.

The rate at which the fading occurs is controlled by the “Set Fade Speed” (‘f’) command.
The default fade time is 15 time units.

Examples:
{‘h’, 128, 0xff,0xff} // fade to cyan
{‘h’, 172, 0xff,0xff} // fade to bright blue
{‘h’, 43, 0xff,0xff} // fade to yellow
{‘h’, 43, 0x00,0xff} // fade to white

Fade to Random RGB Color format: {‘C’,r,g,b}

This command fades from the current color to a random color. It takes 3 bytes as
arguments, one for each R,G,B channel. Each argument is the range or amount of
randomness for each of the R,G,B channels from which to deviate from the current color.

A setting of 0 for a channel means to not change it at all.

This command is good for creating randomly fading colors like a mood light.

Examples:
{‘n’, 0xff,0xff,0x00} // set color to yellow now
{‘C’, 0xff,0x00,0xff} // random fade to a purplish color

Fade to Random HSB Color format: {‘H’,h,s,b}

This command fades from the current color to a random color. It takes 3 bytes as
arguments, one for each H,S, B value. Each argument is the range or “degree” of
randomness to deviate from the current H,S,B color.

A setting of 0 for a channel means to not change it at all.

This command is good for creating randomly fading colors like a mood light.

Examples:
{‘n’, 0xff,0xff,0x00} // set color to yellow now
{‘H’, 0xff,0x00,0x00} // fade to random hue, keep sat & bright

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

Play Light Script format: {‘p’,n,r,p}

This command will play the specified light script immediately, stopping any currently playing
script. The command takes two bytes as arguments. The first byte is the script id of the
script to play. A list of the available scripts is below. The second argument is the number of
repeats to play the script. A repeats value of 0 means play the script forever. The last
argument is the script line number to start playing from. A value of 0 means play the script
from the start.

To adjust the playback speed of a script that’s running, adjust the fade speed (“Set Fade
Speed”, ‘f’) and time adjust (“Set Time Adjust”, ‘t’) to taste. Altering these values can
greatly alter the lighting effect for the built-in light scripts.

For more conceptual information about BlinkM light scripts, see Section 4.2 “Light Scripts”
below.

Examples:
{‘c’, 0x00,0x00,0x00} // fade to black
{‘p’, 0x01,0x05,0x00} // play script 1 five times

Pre-defined light scripts
For exact commands used to produce these light scripts, see the
“blinkm_nonvol_data.h” header file available on blinkm.thingm.com.

id description color sequence

0 eeprom script

default startup

white→red→green→blue→off

(can be reprogrammed)

1 RGB red→green→blue

2 white flash white→off

3 red flash red→off

4 green flash green→off

5 cyan flash cyan→off

6 magenta flash magenta→off

7 yellow flash yellow→off

8 black off

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

id description color sequence

9 hue cycle red→yellow→green→cyan→blue→purple

10 mood light random hue→random hue

11 virtual candle random yellows

12 virtual water random blues

13 the seasons spring colors→summer→fall→winter

14 thunderstorm random blues & purples→white flashes

15 stop light red→green→yellow

16 morse code S.O.S in white

17... ...surprises...

Stop Script format: {‘o’}

This command stops any currently playing script. If no script is playing, this command has
no effect. It takes no arguments.

Examples:
{‘p’, 0x06,0x00,0x00} // play script 6 forever
... // watch it for awhile
{‘o’} // stop the script

Set Fade Speed format: {‘f’,f}

This command sets the rate at which color fading happens. It takes one argument that is the
fade speed from 1-255. The slowest fading occurs when the fade speed is 1. To change
colors instantly, set the fade speed to 255. A value of 0 is invalid and is reserved for a future
“Smart Fade” feature.

This command does not return a value.

Examples:
{‘p’, 0x06,0x00,0x00} // play script 6 forever
{‘f’, 15} // set fade speed to 15

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

Set Time Adjust format: {‘t’,t}

This command adjusts the playback speed of a light script. It takes one byte as an
argument, a signed number between -128 and 127. The argument is treated as an additive
adjustment to all durations of the script being played.

A value of 0 resets the playback speed to the default.

This command does not return a value.

Examples:
{‘p’, 0x03,0x08,0x00} // play script 3 eight times
{‘t’, -10} // but at a faster speed

Get Current RGB Color format: {‘g’}

return values: {R,G,B}

This command returns the current color in RGB format. The command takes no argument
bytes but returns 3 bytes representing the current values of the red, green and blue
channels.

Note: that if the BlinkM is currently fading between colors, this command returns the
instantaneous current color value, not the destination color.

Examples:
{‘c’, 0x99,0x33,0xcc} // set color to #9933cc now
{‘g’} // get color back (should be 9933cc)

Write Script Line format: {‘W’,n,p, d,c,a1,a2,a3}

This command writes a light script line. The first argument is which script id to write to.
Currently, only script id 0 can be written to. The second argument is which line in the script
to change, and can range from 0-49. The third argument is the duration in ticks for that
command to last. The next four arguments are the BlinkM command and its arguments.
Any command with less than 3 arguments should fill out the remaining arguments slots with
zeros.

Once all the lines of the desired script are written, set the script length with the “Set Script
Length” (“L”) command.

This command does not return a value.

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

Examples:
// write to line 3 a “fade to purple” command w/ duration 20
{‘W’,0,3, 20, ‘c’,0xff,0x00,0xff} // write to line 3

Read Script Line format: {‘R’,n,p}

return values: {d,c,a1,a2,a3}

This command reads a script line and returns the script line’s values. The first argument is
the script id to read from. Script id 0 is the eeprom script that can be written to, Script ids
>0 refer to the built-in ROM scripts. The second argument is the number of the script line to
read back.

There are 5 bytes of return values: d = duration in ticks, c = command, a1,2,3 = arguments
for command. If an invalid script id or script line number is given, all return values are zeros.

Examples:
// read line 3 of script id 0
{‘R’,0,3} // read line 3

Set Script Length & Repeats format: {‘L’,n,l,r}

This command sets the length of a written script. The first argument is the script id to set,
currently only script id of 0 is valid. The second argument is the length of the script, and the
third argument is the number of repeats for the script.

This command does not return a value.

Examples:
{‘L’, 0x00,10,0x01} // set script id 0 to a len. of 10, one repeat

Set BlinkM Address format: {‘A’,a,0xd0,0x0d,a}

This command sets the I2C address of a BlinkM. It takes four arguments. The first and last
argument are the new address, and the second and third arguments are {0xd0,0x0d}. These
two arguments are used as a check against inadvertent address changing. This command
can be used with the I2C “general call” broadcast address to change the address of a
BlinkM if the previous address is not known. When using general call, only have one BlinkM
powered up on the bus at a time or they will all change their address.

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

This command does not return a value.

Examples:
{‘A’, 0x12,0xd0,0x0d,0x12} // change address to 0x12

Get BlinkM Address format: {‘a’}

return values: {a}

Returns the I2C address.

 Examples:

{‘a’} // get address (default is 0x09)

Get BlinkM Firmware Version format: {‘z’}

return values: {v1,v2}

Returns the BlinkM firmware version. The first byte is the major version, the second byte is
the minor version.

Examples:

{‘z’} // get version (default is ‘a’,’a’)

Set Startup Parameters format: {‘B’,m,n,f,t}

This command sets the startup (or “boot”) action for BlinkM. The command takes four
arguments. The first argument is the startup mode: 0 means do nothing, 1 means play a
script. The second argument is which script id to play. The third argument is the fade time
to use for the script, and the last argument is the time adjust to use with the script.

This command does not return a value.

Examples:

// on startup, play script 0 ten times,
// with fadespeed = 0x20 and time adjust of -5
{‘B’,1,0,10,0x20,-5}

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

4. 	 BlinkM Concepts

BlinkM has many features. This section goes into some of the conceptual aspects of how
several key BlinkM features work.

4.1 	 I2C Addressing

BlinkM ships with a default I2C address of 0x09. Feel free to change this address so it
doesn’t collide with any other I2C devices present on the I2C bus.

The BlinkM address can be changed if the current address is unknown. The “Set BlinkM
Address” (‘A’) command can be sent to the I2C “general call” (i.e. broadcast) address. The
general call address is 0x00. This allows changing of a BlinkM’s address without knowledge
of its prior address. Be sure to only have one BlinkM powered up on the I2C bus when
using general call.

See “Set BlinkM Address” and “Get BlinkM Address” commands for more details.

4.2 	 Light Scripts

BlinkM Light scripts can be used to create complex patterns of light that are triggered via a
single command. There are several built-in “ROM” light scripts and one light script that can
be reprogrammed.

A light script is a sequence of timed BlinkM commands (“script lines”), as well as the script
length in script lines and the number of repeats it should naturally last.

The possible commands can be any combination of the commands:

■ “n” – Set RGB color now
■ “c” – Fade to RGB color
■ “h” – Fade to HSB color
■ “C” – Fade to Random RGB color
■ “H” – Fade to Random HSB color
■ “f” – Set Fade time
■ “t” – Set Time Adjust
■ “p” – Play light script

Each “line” in a light script describes a duration for that script line and a BlinkM command
with up to 3 arguments. The duration value is in ‘ticks’ (1/30th of a second), and can range
from 1 to 255. The BlinkM command and args are the ones listed above and described in
Section 3. If a BlinkM command has less than three arguments, the remaining argument
slots should be filled with zeros.

When a script is played, each line is played one after the other until the end of the script. If
the script is set to loop, it restarts playing from the first script line. When playing a script line,

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

its command is invoked and then BlinkM will wait for line’s duration to be up before going on
to the next script line.

If a script contains a “p” command, it will start playing a new script and forget the currently
playing one.

For details on how to play and write light scripts, see “Play Script” (“p”), “Write Script
Line” (“W”), “Read Script Line” (“R”), and “Set Startup Parameters” (“B”).

4.3 	 Color Models

BlinkM supports two different color models: RGB and HSB. RGB is the color model most
people are familiar with. It’s used to specify colors on web pages. The color “#FF0088” (a
reddish purple) are the three components of red, green, and blue. The HSB color model
uses one number for color, or hue, and then two other numbers to specify the lightness/
darkness of the color and vividness of the color.

4.3.1	 About the RGB Color Model
When dealing with RGB LEDs, the simplest way to describe a color is to describe the
percentage of light from each of the Red, Green, and Blue primary colored components.
Various combinations of R,G,B can create any color in the spectrum. If equal intensities of
red, green, and blue colors are mixed, the result will be white. Figure 4.3.1 shows this RGB
additive color mixing for the secondary colors cyan, yellow, and magenta. White results
when equal parts red, green, and blue are mixed.

4.3.2 	 About the HSB Color Model
An alternate way of describing color instead of its R,G,B components is to specify its hue
(“H”), how vivid, or saturated, that hue is (“S”), and how bright the color is (“B”). This
manner of describing color is called the “HSB” or “HSV” color space. (“V” == value ==
brightness)

Figure 4.3.1: RGB additive color model

red

bluegreen

yellow

cyan

magenta

white

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

The HSB color model is useful when adjusting only the brightness of a color, without
affecting its hue, or vice versa.

This is equivalent to going around the edge of the color wheel but instead of ranging from 0º
to 360º, the hue value ranges from 0-255.

When experimenting with HSB, it’s best to set saturation and brightness to both 255 to dial
in the color desired. After the desired hue is reached, adjust brightness and saturation to
taste.

4.3.3 Color Response and Calibration
BlinkM is not a color-calibrated device. The RGB or HSB values sent to it will not match
exactly the same values on a computer screen. There are few reasons for this. Partly it is
because of the logarithmic brightness response of LEDs. Even when this logarithmic
response is taken into account, there are 1-5% variation in the component values.

4.4 Timing variations

BlinkM uses an internal PLL RC oscillator with approximately 1% accuracy. This relatively
low accuracy doesn’t affect I2C communications but does become apparent when running
multiple BlinkMs with long-duration light scripts. If synchronization is important, periodically
resync the BlinkMs by either power cycling them (power up time is less than a millisecond)
or sending “Play Script” or similar commands over I2C.

5.	 Other Circuits

BlinkM can be used in many ways, with a wide variety of controllers and power sources.

5.1	 Connecting BlinkM to a Basic Stamp

Unlike the Arduino, which has built-in pull-up resistors on the I2C lines, a Basic Stamp
requires external pull-ups. Figure 5.1 shows one method of wiring up a BlinkM to a Basic

Figure 4.3.2: Hue, Saturation, & Brightness values for HSB color model

0 25512864 192

2550

hue=0-255, sat=255, bright=255

hue=0,sat=255,bright=0-255

2550

hue=0,sat=0-255,bright=255

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

Stamp 2.. The BlinkM “I2C d” (SDA) line is connected to Basic Stamp P0 an the “I2C
c” (SCK) line is connected to Basic Stamp P1. See blinkm.thingm.com for code examples.

5.2 Connecting Multiple BlinkMs

BlinkM communication is done via I2C, a simple network protocol. To add multiple BlinkMs
to a circuit, connect them all their I2C data and clock lines together as in Figure 5.2.

5.3 Battery Powered BlinkM

Once a light script is programmed in and set to run on startup, BlinkM can function entirely
stand-alone and from a battery. This could be useful for custom bike lights and so on. To
turn on and and off BlinkM, just apply and remove power. Any battery between 3V and 5V
will work with BlinkM.

Figure 5.1: Connecting BlinkM to a Basic Stamp 2

4.7k
4.7k

GND

PWR

SDA

SCK

Basic Stamp 2

Figure 5.2: Connecting Multiple BlinkMs

SDA
SCK

PWR
GND

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

Coin cells that are between 3-5V will also work, as in Photo 2.1, but their high internal
resistance means BlinkM maximum brightness is reduced. Also coin cells have a small
capacity so will not last very long if driving a BlinkM that is always on.

In general, BlinkM brightness is inversely-correlated with battery life. If a BlinkM is always
on and at full-brightness, battery life will be half of what it would be if the BlinkM was at half-
brightness or blinking with a 50% duty-cycle.

5.4 Reprogramming BlinkM’s Flash Memory

BlinkM can also be used as a general AVR ATtiny45 development board. The ATtiny45 is
very similar to most other AVR chips, like those in Arduino. The 6 connections at the bottom
of BlinkM form a complete AVR-ISP set of connections (albeit in an alternate form factor).
Figure 5.4 shows how to convert the BlinkM pins to a 6-pin AVR-ISP connector.

Figure 5.3: Battery Powered BlinkM

GND PWR

3.5-5V battery

Figure 5.4: BlinkM to AVR-ISP wiring diagram

GND

PWR/VTG

MOSI/SDASCK

1 2
MISO

ISP6PIN

RST

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

Note: most programmers do not supply power to the “VTG” (“PWR”) line, so power will need
to be supplied to BlinkM in order to program it.

Note: do not try to sent I2C commands to a BlinkM while being programmed or the
programming will fail.

6. Code Examples

These are code examples for Arduino/AVR, a common microcontroller platform. Other
microcontrollers (with or without built-in I2C) such as the Basic Stamp 2 will follow similar
practices when communicating with BlinkM.

There are several complete code examples available at http://blinkm.thingm.com/.

6.1 Arduino/AVR

The Arduino/AVR examples use the Wiring “Wire” library to perform I2C operations. To use
the Wire library, include it at the top of each sketch with “#include “Wire.h””.

6.1.1	 Basic commanding

Commands are sent to the BlinkM’s address (or the general call address). The bytes of the
command are sent one after the other.

Thus to send the command “{‘f’,0xff,0x00,0x00}” (i.e. “Fade to full red”):

#include “Wire.h”
Wire.begin(); // set up I2C
Wire.beginTransmission(0x09);// join I2C bus, to BlinkM 0x09
Wire.send(‘f’); // ‘f’ == fade to color
Wire.send(0xff); // value for red channel
Wire.send(0x00); // value for blue chan.
Wire.send(0x00); // value for green chan.
Wire.endTransmission(); // leave I2C bus

6.1.2	 Reading Command Responses
For the commands that return a response, a second “read” transaction follows the “write”
transaction

#include “Wire.h”
Wire.begin(); // set up I2C
Wire.beginTransmission(0x09); // join I2C bus, to BlinkM 0x09
Wire.send(‘g’); // ‘g’ == get current RGB color
Wire.endTransmission(); // done with command send
if(Wire.available()) { // make sure there’s data
 byte r = Wire.receive(); // get red value
 byte g = Wire.receive(); // get blue value

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

 byte b = Wire.receive(); // get green value
}

6.1.3	 Using the BlinkM_funcs.h library
To make communicating with BlinkM easier on Arduino, a library of useful functions is
available from blinkm.thingm.com called “BlinkM_funcs.h”.

Place this file in the same directory as the Arduino sketch and “#include” it at the top to
import all the functions.

The above commands using BlinkM_funcs.h look like:

#include “BlinkM_funcs.h”
byte addr = 0x09;
byte r,g,b;
BlinkM_begin(); // init BlinkM funcs
BlinkM_fadeToRGB(addr, 0xff,0x00,0x00); // fade to red
BlinkM_getRGBColor(addr, &r,&g,&b); // get curr. RGB color

Every function except BlinkM_begin() has as its first argument the address of the BlinkM
to control.

For more information about the BlinkM_funcs.h library, see the instructions at the top of
that file.

6.1.4	 Programming Light Scripts
Light scripts are the most complex aspect of talking to BlinkM, and are optional if BlinkMs in
real-time under another processor’s control. However, they do allow one to free up

For more information about light scripts, see “5.3 Light Scripts”.

#include “BlinkM_funcs.h”
// a script line contains: {dur, {cmd, arg1,arg2,arg3}}
blinkm_script_line script_lines[] = {
 { 1, {'f', 20,0x00,0x00}}, // set fade speed to 20
 { 20, {'c', 0x11,0x12,0x13}}, // fade to rgb #112233
 { 20, {'c', 0xff,0xcc,0xee}}, // fade to rgb #ffccee
 { 20, {'c', 0x88,0x88,0x88}}, // fade to rgb #888888
 { 20, {'C', 0x00,0x7f,0x7f}}, // randomly alter grn & blu
};
byte addr = 0x09
byte script_id = 0; // can only write to script 0
byte script_len = 5; // number of lines in script
BlinkM_begin(); // init BlinkM funcs
BlinkM_writeScript(addr, script_id,script_len,&script_lines);

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

6.1.5	 Talking to multiple BlinkMs
There are two ways to control multiple BlinkMs: addressing each directly or using the I2C
“general call” address (“0”,zero) to address them all simultaneously. The general call
method is only useful for those command that do not return a value (this represents all color
control and light script playing commands). The general call is thus like a broadcast address
that can be used to synchronize a set of BlinkMs.

When addressing each BlinkM independently, just specify the address of a specific BlinkM.
Using BlinkM_funcs.h, controlling multiple BlinkMs is straightforward:

#include “BlinkM_funcs.h”
byte addr1 = 0x09; // the first blinkm
byte addr2 = 0x12; // the second blinkm
BlinkM_begin(); // init BlinkM funcs
BlinkM_fadeToRGB(addr1,0xff,0x00,0x00); // fade 1st to red
BlinkM_fadeToRGB(addr2,0x00,0x00,0xff); // fade 2nd to blue
BlinkM_fadeToRGB(0, 0xff,0xff,0xff); // fade all to white

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

7.	 Electrical Characteristics

symbol parameter Condition min typ max units

Vcc Operating Voltage 3* 5 5.5 V

Icc Power Supply Current LED full dark 1.5 mA

LED full bright 60 mA

RESET held low 1 mA

*Note: LEDs might not fully turn on at voltages below 3.5V.

All other electrical characteristics are the same as those for Atmel’s ATtiny45 AVR
microcontroller. See http://atmel.com/avr/ for more details.

8. BlinkM Schematic

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

http://atmel.com/avr/
http://atmel.com/avr/

9.	 Packaging Information

All units in inches.

Figure 8: Packaging Information

0.62"

0.60"

0.031"

0.10"

0.22"

0.38"

blinkm datasheet v20080102a

 blinkm.thingm.com

BLINKM v1 DATASHEETM

THINGM LABS
http://thingm.com/

address
1126 Palm Terrace
Pasadena, CA 91104

http://thingm.com
http://thingm.com

